Ribosome biogenesis disruption mediated chromatin structure changes revealed by SRAtac, a customizable end to end analysis pipeline for ATAC-seq

Abstract The nucleolus is a large nuclear body that serves as the primary site for ribosome biogenesis.Recent studies have suggested that it also plays an important role in organizing chromatin architecture.However, to establish a causal relationship between nucleolar ribosome assembly and chromatin architecture, genetic tools are required to disrupt nucleolar ribosome biogenesis.In this study, mesa boogie 4x12 we used ATAC-seq to investigate changes in chromatin accessibility upon specific depletion of two ribosome biogenesis components, RPOA-2 and GRWD-1, in the model organism Caenorhabditis elegans.To facilitate the analysis of ATAC-seq data, we introduced two tools: SRAlign, an extensible NGS data processing workflow, and SRAtac, a customizable end-to-end mega motion lc100 ATAC-seq analysis pipeline.

Our results revealed highly comparable changes in chromatin accessibility following both RPOA-2 and GRWD-1 perturbations.However, we observed a weak correlation between changes in chromatin accessibility and gene expression.While our findings corroborate the idea of a feedback mechanism between ribosomal RNA synthesis, nucleolar ribosome large subunit biogenesis, and chromatin structure during the L1 stage of C.elegans development, they also prompt questions regarding the functional impact of these alterations on gene expression.

Leave a Reply

Your email address will not be published. Required fields are marked *